Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38610950

RESUMEN

(1) Background: Cervical intraepithelial neoplasia (CIN) is a precancerous condition linked to human papillomavirus (HPV) infection, often necessitating surgical interventions carrying the risk of subsequent preterm births. This study explores the potential of imiquimod (IMQ), as a non-invasive alternative treatment. The focus is on understanding IMQ impact on immune checkpoint molecules, particularly PD-1, PD-L1, and sHLA-G, which play pivotal roles in shaping immune responses and cancer progression. (2) Methods: Forty-three patients diagnosed with a high-risk squamous intraepithelial lesion (HSIL, p16-positive) self-applied 5% IMQ encapsulated in sachets containing 250 g of cream into the vaginal cavity three times a week for 16 weeks. The impact of IMQ therapy on cervical lesion regression was assessed through immunohistochemistry (IHC), examining changes in sHLA-G, PD-L1, and PD-1 levels. The antiviral activity of IMQ was evaluated through HPV-E7 immunofluorescence. Ethical considerations were adhered to, and the research methods were based on a previously approved clinical trial (clinicaltrials.gov Identifier: NCT04859361). (3) Results: IMQ treatment demonstrated efficacy, leading to lesion regression. sHLA-G levels in CIN before starting IMQ application were associated with unsuccessful treatment (p = 0.0036). IMQ did not significantly alter the expression of PD-1. We observed a decrease in PD-L1 levels in those who were successfully treated (p = 0.0509) and a reduction in HPV burden. (4) Conclusions: IMQ exhibits promise as a non-invasive treatment for CIN, emphasising its potential to modulate the immune microenvironment. Baseline sHLA-G levels emerge as potential predictors of treatment response. Understanding the nuanced dynamics of immune checkpoints sheds light on IMQ mechanism of action. Further exploration is warranted to decipher the intricate mechanisms underlying IMQ treatment in the context of cervical lesions.

2.
J Neuroimmune Pharmacol ; 18(3): 427-447, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37382830

RESUMEN

Increasing evidence has indicated that prebiotics as an alternative treatment for neuropsychiatric diseases. This study evaluated the prebiotics Fructooligosaccharides (FOS) and Galactooligosaccharides (GOS) on the modulation of neuroinflammation and cognition in an experimental model of mice high-fat diet fed. Initially, mice were distributed in the following groups: (A) control standard diet (n = 15) and (B) HFD for 18 weeks (n = 30). In the 13th week, the mice were later divided into the following experimental groups: (A) Control (n = 15); (B) HFD (n = 14); and (C) HFD + Prebiotics (n = 14). From the 13th week, the HFD + Prebiotics group received a high-fat diet and a combination of FOS and GOS. In the 18th week, all animals performed the T-maze and Barnes Maze, and were later euthanized. Biochemical and molecular analyzes were performed to assess neuroinflammation, neurogenesis, synaptic plasticity, and intestinal inflammation. Mice fed HFD had higher blood glucose, triglyceridemia, cholesterolemia, and higher serum IL-1ß associated with impaired learning and memory. These obese mice also showed activation of microglia and astrocytes and significant immunoreactivity of neuroinflammatory and apoptosis markers, such as TNF-α, COX-2, and Caspase-3, in addition to lower expression of neurogenesis and synaptic plasticity markers, such as NeuN, KI-67, CREB-p, and BDNF. FOS and GOS treatment significantly improved the biochemistry profile and decreased serum IL-1ß levels. Treatment with FOS and GOS also reduced TNF-α, COX-2, Caspase-3, Iba-1, and GFAP-positive cells in the dentate gyrus, decreasing neuroinflammation and neuronal death caused by chronic HFD consumption. In addition, FOS and GOS promoted synaptic plasticity by increasing NeuN, p-CREB, BDNF, and KI-67, restoring spatial learning ability and memory. Moreover, FOS and GOS on HFD modulated the insulin pathway, which was proved by up-regulating IRS/PI3K/AKT signaling pathway, followed by a decreasing Aß plate and Tau phosphorylation. Furthermore, the prebiotic intervention reshaped the HFD-induced imbalanced gut microbiota by modulating the composition of the bacterial community, markedly increasing Bacteroidetes. In addition, prebiotics decreased intestinal inflammation and leaky gut. In conclusion, FOS and GOS significantly modulated the gut microbiota and IRS/PI3K/AKT signaling pathway, decreased neuroinflammation, and promoted neuroplasticity improving spatial learning and memory. Schematic summarizing of the pathways by FOS and GOS improves memory and learning through the gut-brain axis. FOS and GOS improve the microbial profile, reducing intestinal inflammation and leaky gut in the distal colon. Specifically, the administration of FOS and GOS decreases the expression of TLR4, TNF-α, IL-1ß, and MMP9 and increases the expression of occludin and IL-10. Prebiotics inhibit neuroinflammation, neuronal apoptosis, and reactive gliosis in the hippocampus but restore synaptic plasticity, neuronal proliferation, and neurogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...